
Mobile Application Validation through Virtualization

Cyril Dumont
1
 Steven Enten

2
 Fabrice Mourlin

2
 Laurent Nel

1

(1) Research department

Leuville Objects

Versailles, France

email : {cyril.dumont, laurent.nel}@leuville.com

(2) LACL

UPEC University

Créteil, France

email : {steven.enten, fabrice.mourlin}@u-pec.fr

Abstract—When several business applications use low level

libraries which are not installed in the firmware of the device;

a solution consists in building of a new firmware with the well-

chosen libraries. This afford to deploy only once for all the

business mobile applications. The complete adaptation of an

operating system to replace the Read-Only Memories

(currently called ROM) manufacturer, fundamentally changes

the kernel of an embedded system. This solution allows us to

offer regular and frequent custom firmware updates that

maintain business applications dedicated stability in time. By

creation of firmware, we leave out the space consuming trial

software. We may also leave out many of the included utilities,

letting our users add them back only if they need them. Often

we also strip out carrier specific versions of the launcher,

replacing them with Google’s original versions or a version we

prefer. After customizing a firmware, we focus on adding

business software in place to monitor the embedded device.

Thru, we use this firmware to virtualize an embedded device.

Thus, we collect information to determine whether the

firmware can be deployed on devices. The collected data are

about memory usages, threads, and resource access and energy

consumption. So, this reporting step sums up the validation of

our firmware, then they are validated to a deployment step on

mobile devices. Reports are delivered about the behaviors of

embedded software.

Keywords-embedded device; firmware custom; monitoring;

virtualization; state management.

I. INTRODUCTION

To cook a ROM (Read Only Memory) is the process of
modifying a firmware of an embedded device. It can be seen
as a kind of bridge between the applications and the actual
hardware of a device. When business applications need low
level libraries, the firmware has to be customized by the
company. For companies which need specifically designed
terminals to one or more trades, rhis new solution is called
the Read-Only Memories (currently called ROM) cooking.
Such approach is also useful when business applications have
to be added into a new kind of embedded device. Starting
from a base of operating system (such as Android) installed
on a smartphone or tablet, firmware, or operating system is
modified to fully meet demands without unnecessary
applications. Another motivation of firmware update
occurred when low level libraries have to be changed. There
are plenty of examples in companies: for instance a TV
application needs a specific library for video streaming; a

network application which encrypts its messages needs also
the use of a specific algorithm which is not necessary in a
standard distribution of the framework.

The firmware cooking, namely the complete adaptation
of an operating system to replace the firmware manufacturer,
fundamentally changes the kernel, the Android framework
and pre-installed applications for a completely clean system
to the company. This solution has the merit of offering and
customized the firmware of regular updates and more
frequent than the manufacturer's updates. This solution
provides better stability over time of business applications.
Android firmware is particularly suitable for customization
for several reasons. Embedded device manufacturers have a
process to build their own firmware. It is time consuming and
the update management is a difficulty regarding the set of
potential devices.

As an open system, developers have the source code
required to modify the Linux kernel. They rely for the rest on
the binary components manufacturer if their source codes
have not been distributed. These codes are commonly
referred to as hardware abstraction modules, for example for
the camera, Global Positioning System (GPS), sound and
graphics acceleration. Android is supported by a broad
spectrum of terminals, allowing a company to choose the
device ergonomics best suited to business constraints.

Finally, users are not disturbed because the Android
environment is familiar. A consumer product can perfectly
meet a Business to Business (B2B) demand. Experience has
shown that the porting of applications is now done without
difficulty, regardless of the changes made by Google's
Android versions, even a major evolution [1].

Some companies that have experience in customizing
firmware chose to integrate their approach, the staff
concerned. The selected spectrum of users participating in
the experiment, allowing finely define requirements and
content and gradually reflect on future developments as a
dedicated applications market. These companies are also
finding true motivation of their staff on these issues. Today,
in terms of support, initiatives are numerous: note of Android
Business Group, the sharing of experiences between large
accounts [2], the Data Android User Group [3], a monthly
meeting of developers, backed by Google and able to meet
many contributors. This contributes to the development of
firmware cooking into several companies.

The firmware cooking allows access to personal data
essential to their work wherever the end users are and the

7Copyright (c) IARIA, 2015. ISBN: 978-1-61208-441-1

VALID 2015 : The Seventh International Conference on Advances in System Testing and Validation Lifecycle

company with materials and fully dedicated to their activities
such as information environments, training, home
automation, transportation, geolocation, security, etc.). When
new software is installed, the consequences on these data are
essential. Also, what are the disruptions caused by new
software on the host platform. In order to do this study, it is
important to be able to place a virtual machine under
observation. The goal is to validate by suitable tests that use
this virtual machine are safe. These observations are crucial
because the next step is the deployment of virtual machine on
mobile devices. And any error becomes serious
consequences for the users and the publishers [4].

We have structured our paper to present our approach to
firmware customization and also put in our firmware
monitoring controllers. So, the section 2 deals with the
monitoring of mobile applications, the nature of the data
collected but also how to make the collections to minimize
disruption to ongoing observations. In section 3, we discuss a
case of firmware manufacturing dedicated to the study of a
business application. We add measurement points dedicated
to the type of mobile platform. Then, we perform the data
collection and build the associated representations. In section
4, we explain the usefulness of such software architecture for
gathering information. Data analysis is also detailed. Finally,
we conclude on the implementation of our approach for
customizing firmware before deployment.

II. MOBILE APPLICATION MONITORING

Because new applications can involve conflicts between
the previously installed applications, it is essential to observe
the behavior of the mobile applications on a given device.
This is particularly crucial with applications which need root
permission or acquire some sensors such as a camera, etc.
Mobile monitoring is become a key step in the lifecycle of a
new mobile application. This step consists of looking at the
behavior of an application on an embedded platform.

A. Embedded system monitoring

1) Basic mobile application monitoring:
Some fraudulent mobile applications are malware, which

may capture personal information sent and received by the
device or make phantom calls to premium phone numbers,
while others may just be using a company name or logo
without prior authorization. Regardless of their intent, these
applications create a negative association in the mind of the
user, which tarnishes the company’s good reputation. This
type of bad behavior can be detected by a sufficiently long
period of observation commissioning of future embedded
platforms.

When a fraudulent application is detected, it has to be
immediately reported to a log along with a full report [5].
This contains developer information, number of downloads,
application screenshots, and a diagnostic as to why this
mobile application is believed it to be fraudulent. It provides
valuable intelligence data and can help support a criminal
investigation.

Today, manufacturer services give security operations
users an additional layer of protection, coupled with a new
data stream that includes more contextual information about

the specific and potential threats contained in fraudulent
mobile applications. This approach can be completed by ad
hoc tools, which collect data about runtime of applications
under observation. We have decided to build a tool chain for
building these data collections.

2) Adhoc monitoring.
Through the application monitoring feature a mobile

application can be studied in depth if the monitoring task is
developed in close relationship with the features of the given
mobile application. For instance, when a mobile application
uses Bluetooth protocol, then a monitoring task has to be
configured to control the packets, which are transferred on
this protocol, the collisions which occur, the availability of
the sensor, etc.

Tools such as Systrace tool, helps us to analyze the
performance of mobile applications by capturing and
displaying execution times of these applications processes
and other Android system processes [6]. This kind of tools
combines data from the Android kernel, such as the Central
Processing Unit (CPU) scheduler, disk activity, and
application threads to generate an Hypertext Markup
Language (HTML) report that shows an overall picture of an
Android device’s system processes for a given period of
time. Very often, such kind of tools is considered as
debugging tools because they are particularly useful in
diagnosing display problems where an application is slow to
draw or stutters while displaying motion or animation. But a
main drawback is the obligatory use of a USB debugging
connection.

We needed a way to get periodic screenshots of a mobile
device connected to a computer through a light protocol. On
Android Platform Dalvik Debug Monitor Server (DDMS)
has the ability to take screenshots on-demand, but not
automatically. It provides port forwarding services, screen
capture on the device, thread and heap information on the
device, etc. but the documentation is so poor that source code
of the library is the only information source. It uses an

Android Debug Bridge called adb. It allows us to
communicate with a connected device on the same WIFI
network.

On Android, every application run in their own process,
each of which runs in its own Virtual Machine (VM). Each
VM exposes a unique port that a debugger can attach to. We
have built a DDMS monitoring application for looking at the
embedded runtime of business applications. When we start

our DDMS application, it connects to adb. When a device is

connected, a VM monitoring service is created between adb
and our DDMS monitoring application, which notifies our
DDMS application when a VM on the device is started or
terminated. Once a VM is running, our DDMS application

retrieves the VM's process ID (pid), via adb, and opens a

connection to the VM, through the adb daemon (adbd) on
the device. Our DDMS application can then talk to the VM
using a custom wire protocol. The result is a data collection
about the behavior of the embedded business application.

This strategy can be translated within a hypervisor like

VirtualBox or VMWare. The adb daemon is called through
a virtual network mapping between the host platform and the

8Copyright (c) IARIA, 2015. ISBN: 978-1-61208-441-1

VALID 2015 : The Seventh International Conference on Advances in System Testing and Validation Lifecycle

Android virtual machine. The main advantage of this
approach is to run the monitor on the host platform and the
mobile application (under observation) on a virtual machine
managed by a hypervisor. A second benefit is on the porting
of application. The hardware architecture constraints are
respected; only the configuration of our monitoring
application is updated and its network mapping.

B. Memory management

Our DDMS application allows us to view how much heap
memory a process is using. This information is useful in
tracking heap usage at a certain point of time during the
execution of business applications. Another feature of our
DDMS application is to track objects that are being allocated
to memory and to see which classes and threads are
allocating the objects. This allows us to track, in real time,
where objects are being allocated when we perform several
actions in our application. This information is valuable for
assessing memory usage that can affect application
performance. This happens when an application shares
preferences with another one.

The file system of the virtual machine is also an
information source. It is useful in looking at files that are
created by a mobile application or if we want to transfer files
to and from the virtual machine. This is also useful when the
size of the data collection is so large that it is suitable to filter
a part of the data before the transfer. This case occurs when
the mobile application uses the sensors such as the camera or
the microphone. The output format and the recording involve
often a large output file. Only a part of the data is useful for
the analysis. Also, we filter locally to the device a subset of
persistent data by the end of the monitoring scenario.

C. Time profiling

Method profiling is a means to track certain metrics about
a method in a program, such as number of calls, execution
time, and time spent executing the method. When we want
more granular control over where profiling data is collected,
it is possible to deep into the body of a method and to
compute other measures.

A difficulty of embedded operating systems such as
Android lies in its organizational changes between different

versions of the same operating system. So, depending on the
Android version, our DDMS application provides a summary
of what happened inside a given method. Also, we need to
generate log files containing the trace information we want to

analyze. We use the Debug class in our code and call its

methods such as startMethodTracing() and

stopMethodTracing(), to start and stop logging of
trace information to disk. This option is very precise because
we can specify exactly where to start and stop logging trace
data in our DDMS application. Our monitoring application
has necessary the permission to write to external storage.

To create the trace files, we include the Debug class and

we call one of the startMethodTracing() methods. In
the call, we specify a base name for the trace files that the
system generates. These methods start and stop method
tracing across the entire virtual machine. For example, we

could call startMethodTracing() in our activity's

onCreate() method, and by the end of the monitoring

stage, we call stopMethodTracing() in that activity's

onDestroy() method. When our application calls

startMethodTracing(), the system creates a file

called "trace2015-02-02" trace. This contains the full
method trace data and a mapping table with thread and
method names (see figure 1).

The system then begins buffering the generated trace

data, until our application calls stopMethodTracing(),
at which time it writes the buffered data to the output file. If
the system reaches the maximum buffer size before we call

stopMethodTracing(), the system stops tracing and
sends a notification to the console. This event can also trigger
the pulling of the technical data from the mobile device to the
workstation. We have also used the data exportation through
the use of RESTful remote monitoring application.

D. Profiling scenario

After a mobile application has run and our DDMS

application has created the trace files "traceyyyy-MM-

dd".trace on the device, we have to copy those files to the

host computer. We use adb pull to copy the files. As an

example, we copy a trace file, trace2015-02-02, from

the default location on the device to the /tmp directory on
the host machine via:

adb pull /sdcard/trace2015-02-02 /tmp

The format of the trace file is suitable to be parsed by

TraceView or TraceDump. This tool uses the

Graphviz Dot utility to create the graphical output, so we

need to install Graphviz before running this command. But
as we are going to explain in the fourth section, the data can
also be sent to a monitoring server where services parse the

Figure 2. top 5 of costly methods

Figure 1. Monitoring architecture

9Copyright (c) IARIA, 2015. ISBN: 978-1-61208-441-1

VALID 2015 : The Seventh International Conference on Advances in System Testing and Validation Lifecycle

Figure 3. Android layer architecture

collected data and compute metrics about the execution [7].
As an example, the Figure 2 shows the most costly methods
into a bar graph representation.

III. CUSTOM STRATEGY FOR FIRMWARE COOKING

Firmware is the low level programming. They are also
often called firmware; they contain the operating system and
basic applications to make the phone work. For the iPhone
and iPad those firmware come from Apple and can typically
only be updated when Apple issues updates. But for Android
devices there are literally hundreds of developers working on
custom firmware for most common models of phones and
tablets, which they are proud to share with the community. In
our working context, we need to define firmware with
additional software. First, we need to add our DDMS
application for the future observations. This component is
important for local monitoring. Secondly, we want to install
business software which is under control during this
validation step.

A. From source to Virtual Machine

For building a new firmware, several choices have to be
done. So, it is essential to know the advantages or
disadvantages of using an Android Open Source Project
(AOSP) firmware versus a ROM stock. A ROM stock is the
firmware that comes with a device; the device is stocked with
that firmware by the manufacturer. Android is generally
customized by the manufacturer to some degree; at minimum
there needs to be device specific drivers for Android to work
on a particular device. The customizations may include a
custom theme, launcher, and default applications like
monitoring control panel does.

1) A large set of acronyms
An AOSP firmware is a ROM based on the Android

Open Source Project. In the purest sense, AOSP refers to
unmodified ROMs or code from Google. The name is often
co-opted for a custom firmware that is very close to the
original AOSP, since these firmware still need to be
customized; for example, we have downloaded and compiled
the Android source code and run it on a Samsung Galaxy S5
with doing a whole lot of customizations. For example,
monitoring libraries are installed with test suites. This means
that we have added source projects with configuration files
for building, testing.

Technically, ROM stocks are all AOSP firmware apart
from the versions of Android that has not been released yet.
Kitkat and Lollipop firmware are AOSP for a long time; the
source code is available at Android Web site. In the next case
studies, we will use Kitkat and Lollipop versions.

To further add to the confusion, a custom firmware does
not refer to customized firmware in general. That term
specifically refers to firmware that has been customized by
engineers or researchers which are not the manufacturers or
carriers. For example, CyanogenMod provides firmware [8]
which is modified under the constraint of the open source
community. Most AOSP firmware for a specific device is
ROM stocks that have been customized to remove some of
the manufacturer or carrier features and make them closer to
the pure AOSP experience. As an example, we can disable

PIE feature on any ROM stock or AOSP firmware. The
option is not even available in most ROM stocks. So our
solution is to modify the AOSP firmware source and then
build them into an updated firmware.

2) The benefits of firmware cooking:
First of all, the main thing to know is that messing with

the firmware of phone can be risky. We can potentially
damage a mobile phone so that it won’t be usable without
some major low-level hacking. This reason involves our need
to experiment new customized firmware behind a hypervisor.

The most basic benefit of custom firmware is getting rid
of unstable software of malware, spy application and so on.
These applications take up precious room on a mobile
device. Beyond simple fixes, custom firmware can also open
a whole world of new possibilities for new mobile devices. In
many cases newer versions of Android are available for the
devices as custom firmware, beyond what the carrier has
released or is planning to release. Custom firmware can also
include other pleasant features, like overclocking, themes,
private browsing support, and so on.

Our current objective was to isolate the minimum
Android operating system which can support our business
mobile applications and our monitoring tools. The
architecture of Android platform is defined to host new
software. The source codes provided by AOSP are also
organized to host new source projects, which have a
predefined structure. Android has layer architecture (Figure
3). This structure is understandable easily when we explore
the source code. For instance, we wanted to record, convert
and stream audio and video. We observed that, the OpenGL
library can be upgraded or completed by the add-on of

ffmpeg library. Also, we have added the source code
project with Android build file into the whole Android source
files. When a new build is launched, then this new library is
taken into account.

For our project, the main benefit was the enrichment of
the Android source distribution with the source codes of all
the boxes connected with the thick red line (Figure 3). The

10Copyright (c) IARIA, 2015. ISBN: 978-1-61208-441-1

VALID 2015 : The Seventh International Conference on Advances in System Testing and Validation Lifecycle

box called “mobile app” plays the role of the test suites or the
mobile application we want to observe before validation.

Next, a benchmark step can start. Its duration depends on
the features, we want to observe. Software stability is a key
feature in the study of our business applications. Also, the
meantime declared by the manufacturers are used as test
limits

3) Our firmware cooking approach:
A firmware construction is a step by step process. First,

we define the software basement. Then, we prepare the build
of a new firmware, with the selection of the right add-ons.
Controls are done about the version numbers, compatibility
features, architecture definition and security permissions. We
have developed an embedded monitoring application for our
embedded devices that generates log files with technical data
about the runtime. In the future, new tracking tools will be
added about energy management, bandwidth network use.
So, if we imagine those applications always having to write
the machine code to get the monitoring to turn on. It would
be a lot of code duplication and would make an application
slow. Instead, for functions like the method profiler or thread
manager, we have packaged our own monitoring library.
These are pieces of codes that can be executed by calling
them through a method call. These are already pre-written
and ready to use. It saves a lot of coding work and keeps the
source code small. On the Android device, we have particular

libraries like ddms or ffmpeg libraries that can’t be absent,
or else the firmware won’t even be used in our studies.

On Figure 3, the red line highlights the dependencies
during a monitoring scenario. A mobile application is under
observation. Also, by the use of our monitoring application

(called ddms application), we collect behavioral data. They

are computed through the use of ddms library and logcat
library which already belongs to AOSP distribution.
Depending on the application domain of the mobile

application, the ffmpeg library plays a role of stream

observer. For instance, it contains ffprobe tool which
gathers information from multimedia streams and prints it in
human- and machine-readable fashion. For example, we use
it to check the format of the container used by a multimedia
stream and the format and type of each media stream

contained in it. We use ffprobe in combination with a
textual filter, which performs more sophisticated processing,

e.g., statistical processing and plotting. ffprobe output is
easily parsable by a textual filter, and consists of one or more
sections of a form defined by the selected writer, which is
specified by the print format option. The sections contain
other nested sections, and are identified by a unique name.
The metadata tags stored in the container or in the streams
are recognized and printed in the corresponding output
section. This means that we control the properties of the
video streams. Such abilities are essential in the case of audio
communication application, such as encoder/decoder audio
applications. Depending on the data size, the output files are
saved into a specific folder. Each of them respects a block
size limit.

B. Virtual Machines managed by hypervisor

The virtualization is a technology that allows resources to
be shared by a variety of physical outlets. Today,
virtualization is a topic, which is focused on the relatively
new concept of server virtualization. In this context, multiple
operating system and application sets are virtualized on a
single server, allowing it to be more efficiently and cost
effectively used. But, there are a multitude of virtualization
schemes addressing a spectrum of applications. We have
addressed new ideas around virtualization and applied their
uses and advantages to the virtualization of mobile devices.

1) Virtualization of platform.
The virtualization is an abstraction over physical

resources to make them shareable by a number of physical
users. Platform virtualization is what enables both server and
desktop virtualization. A platform in this context refers to the
hardware platform and its various components. This includes
not only the CPU, but also networking, storage and bus
attachments such as USB and serial ports, but also sensor
such as camera, microphone and even GPS or compass.

The key technology that makes this possible is called the
hypervisor. The hypervisor is the component that virtualizes
the platform, making the underlying physical resources
shareable and implementing the policies for sharing among
the multiple virtual machines. These ones can belong to
embedded systems like Android or IOS. They are an
aggregation of the operating system and application set
which contains our mobile applications. The VMs are
considered as a file in some format depending of the
hypervisor. The virtual disk used by the VM is another file
encapsulated within the VM.

An Android VM as a file in a host system like a
hypervisor has some interesting benefits: we can back up the
full virtual machine and its configuration in one hit rather
than backing up at file level within the server. As a file, it's
easy to manage a VM as a template. It's also simple to move
a VM from one host system to another, as the process is
nothing more than a file copy. As we expected with the
virtualization concept, there are a variety of ways in which
virtualization can be achieved. For platform virtualization,
there are two primary models, called full virtualization and
para-virtualization. Both are suitable depending on the kind
of architecture of the mobile device ARM or x86. The last
case corresponds to full virtualization; the former one
exploits an intermediate layer.

2) Managed VM through a hypervisor .
The hardware of mobile devices has multiple features;

this concerns not only the processor but also the sensors and
even the pluggable add-ons. The usage of VM involves
several approaches depending on the architecture of the
physical server. In our project, we use AMD architecture
servers (64 bits). This means that we apply the full
virtualization when we test and validate software for AMD
mobile devices. This kind of virtualization provides a
sufficient emulation of the underlying platform that a guest
operating system and application set can run unmodified and
unaware that their platform is being virtualized. But, the most
widespread kind of processor is ARM, a solution is to make

11Copyright (c) IARIA, 2015. ISBN: 978-1-61208-441-1

VALID 2015 : The Seventh International Conference on Advances in System Testing and Validation Lifecycle

the guest operating system aware that it's being virtualized.
With this knowledge, the guest operating system can short
circuit its drivers to minimize the overhead of
communicating with physical devices.

We use Qemu, which emulates a full system, including a
processor and various peripherals [9]. A number of specific
emulator features are enabled in both the Android kernel and
Android user space environment when run in an emulated
environment. These features allow a smooth and complete
user experience resembling using a real Android device, on
laptop and desktop workstations. With the introduction of the
ARMv8-A architecture and Android support for 64-bit ARM
platforms, this need is more important than ever because it
allows us to begin adapting our applications to an ARM 64-
bit based mobile ecosystem prior to hardware being
available. All of our tests are based on the use of Qemu and
the exposition of our own custom firmware via a graphical
interface.

C. Testbed of mobile business applications

Testing functionality is typically a matter of enumerating
the functions that an application should support, then
defining a set of tests that exercise those functions, with
pass/fail results. Problems that we encounter running
functional tests are input to evaluating usability. For
usability, we want to have several mobile end users with
different skill levels attempting to accomplish a given set of
business goals, producing subjective ratings that indicate
how easy or hard the task was. Performance test results are
easier to quantify, but can be very difficult to interpret. For
example, wireless throughput is always higher in the lab
under ideal conditions than in real life, so be very careful
about the conclusions we draw from performance tests.

To test failure modes in components, we enumerate a
number of possible failure conditions and simulate them. We
must also identify what we are measuring. For example,
when measuring time to establish the connection in the event
of network loss of signal, do us measure network connection
resumption or mobile application connection resumption.

IV. CUSTOM APPROACH OF MOBILE APPLICATION

MONITORING

Based on the build of our own kernel and the enrichment
of the AOSP sourced, we have built our own custom
firmware. Our results are presented as log reports and
numerical measures.

A. Monitoring architecture for mobile applications

When a mobile business application is running under
monitoring, all events are saved through the use of a local
monitoring application (as explained previously). Huge
amount of data, even for relatively small programs are
recorded in the local file system. Then, these data are
exported to a server. The main events are class load, or
unload, compiled method load, and unload, GC start, finish,
method entry and exit, thread start and end, etc. We assign
IDs to objects, classes, methods, etc. And our monitoring
application is responsible for keeping track of IDs. They are
assigned through defining events (e.g., class load). As a small

part of an example of output trace, the following sequence of
event trace in table I.

TABLE I. EVENT TRACE OF METHOD CALLINTENT

public int callIntent(int);

46: iload_1

47: iconst_2

48: irem

49: iconst_1

50: if_icmpne 54

51: iconst_2

52: istore_2

53: goto 56

54: iconst_5

55: istore_2

56: iload_2

57: ireturn

Other information about performance is also collected.
They are about the method execution measure and also class
loading and checking. As an example, the table II shows a
first level of information about time measures. The size of
these data depends on the number of samples per time unit.

TABLE II. DATA TIME COLLECTION

Capture.callIntent 2015-03-08 14:59:30.252,

Capture.update 2015-03-08 14:59:30.254,

Model.get 2015-03-08 14:59:30.255,

Capture.setProps 2015-03-08 14:59:30.258 …

All the timestamps allow tester to display the events of
the garbage collector at runtime.

B. Interaction between monitor and mobile application

Our message exchange protocol is packet based and is
not stateful. There are two basic packet types: command
packets and reply packets. Command packets may be sent by
either the ddms application or the target VM. They are used
by the ddms application to request information from the
target VM, or to control program execution. Command
packets are sent by the target VM to notify the ddms
application of some event in the target VM such as a
breakpoint or exception. A reply packet is sent only in
response to a command packet and always provides
information success or failure of the command. Reply
packets may also carry data requested in the command (for
example, the value of a field or property). Currently, events
sent from the target VM do not require a response packet
from the ddms application.

Our monitoring protocol is asynchronous; multiple
command packets may be sent before the first reply packet is
received. The layout of each packet looks like in table III:

TABLE III. COMMAND PACKET LAYOUT

Header

length (4 bytes)

id (4 bytes)

flags (1 byte)

command set (1 byte)

command (1 byte)

12Copyright (c) IARIA, 2015. ISBN: 978-1-61208-441-1

VALID 2015 : The Seventh International Conference on Advances in System Testing and Validation Lifecycle

data (Variable)

All fields and data sent via our monitoring protocol
should be in big-endian format. It means the big-end is first.
In other words, we store the most significant byte in the
smallest address

TABLE IV. REPLY PACKET LAYOUT

Header

length (4 bytes)

id (4 bytes)

flags (1 byte)

error code (2 bytes)

data (Variable)

The length field is the size, in bytes, of the entire packet,
including the length field in table IV. The id field is used to
uniquely identify each packet command/reply pair. Flags are
used to alter how any command is queued and processed and
to tag command packets that originate from the target VM.
The command set is useful as a means for grouping
commands in a meaningful way. The error code field is used
to indicate if the command packet that is being replied too
was successfully processed.

This command field identifies a particular command in a
command set. This field, together with the command set
field, is used to indicate how the command packet should be
processed. The data field of a command or reply packet is an
abstraction of a group of multiple fields that define the
command or reply data. As an example of data type:
threadID uniquely identifies an object in the target VM that
is known to be a thread. Another example is methodID,
which must uniquely identify the method within its
class/interface or any of its subclasses. A methodID is not
necessarily unique on its own; it is always paired with a
referenceTypeID to uniquely identify one method. The
referenceTypeID can identify either the declaring type of the
method or a subtype.

C. Validation process of mobile application

The list of all the data types is not exhaustive here but all
element of a runtime program can be referenced and tracked.
So, based on these results, we are able to decide whether the
source codes of mobile applications can be added into the
source.

The validation process takes into account response time
of applications and our monitoring protocol helps us to
collect internal data from each application under test. For
instance, when response time is greater than 20% of the
expected response time, we can conclude that there are
perturbations from the runtime context towards the
application sunder test.

Another test case is about the management of the
memory by the virtual machine which runs a business
application. We can compare the used memory with the first
benchmarks of the applications under test. When the
difference exceeds 25% then if means that the application
cannot be deployed on the future firmware.

If we do not respect such rules, we could build unstable
firmware and the consequences will be more serious. For
instance, after flashing the firmware a phone works fine for
one or two weeks. But soon this phone starts crashing more
often. The phone starts rebooting every now and then it
becomes useless. The most difficult point is the loss of
working time. Also, by applying the reference measurement
definition tested is crucial for our validation process

The validation by the use of virtualization has the
advantage of using virtual devices instead of concrete smart
device. The flash of firmware is a dangerous operation for
the hardware and we preserve the hardware by previously
testing our custom firmware. Another approach need a
deployment on a smart device with a rooted firmware.

In the opposite side, the build of firmware involves new
drawbacks after the deployment step. A first one is a legal
issue. This means that the manufacturer guarantee is
cancelled when a free firmware is installed. A second one is
about the telecom provider checks. When several tools of a
given telecom provider are already installed, then exceptions
are raised by these applications when the underlying
firmware is changed. Also, it is often useful to change a
whole toolkit of software when new firmware is built by
ourselves.

V. CONCLUSION

As we explained in the first section, we need to prepare
our own firmware because of the change of libraries which
are essential for our business applications. Also, the choice of
validation before deployment explains our use of virtual
machine. In this paper, we have presented our approach of
the monitoring of mobile business applications. It is based on
a perfect configuration of all the ROM stock and its build.
We have shown that it is preferable to have a local
monitoring instead of a remote monitoring application. The
impact of its actions is less in the case of embedded systems.

We have described briefly our stateless protocol between
the VM of the business application and our monitoring
embedded application. We want to enrich this protocol and
then observe new kinds of property.

The data collected are exported to a server where they
can be parsed and aggregated with other simulations. Next
new reports can be built and published onto a Web server if
the monitoring data are public. We think that our approach is
an adaptation of a monitoring strategy from Web domain into
the domain of mobile applications. We consider our
pragmatic study as a validation of our concepts and our next
step will be to automatize as much as possible all the steps
described in the document. And so, our experience could be
transferred to other development teams.

Our approach reduces the effort of deployment on a large
set of devices. Moreover, we reduce also the number of
anomalies by increasing the observation time when some
expected benchmarks are not achieved

REFERENCES

[1] “The Android Source Code: Governance Philosophy”,

source.android.com, January 25, 2015.

13Copyright (c) IARIA, 2015. ISBN: 978-1-61208-441-1

VALID 2015 : The Seventh International Conference on Advances in System Testing and Validation Lifecycle

[2] M. Isacc, “A deep-dive tour of Ice Cream Sandwich with
Android's chief engineer”, Ars Technica, September 15, 2012.

[3] A. Shah, “Google's Android 4.0 ported to x86 processors”,
Computerworld, International Data Group, February 20, 2012.

[4] R. Whitwam, “HTC Posts Android 4.4 Kernel Source And
Framework Files For One Google Play Edition, OTA Update
Can't Be Far Off”, androidpolice.com, December 2, 2013.

[5] “Exclusive: Inside Android 4.2's powerful new security
system | Computerworld Blogs”, Blogs.computerworld.com,
November 9, 2012.

[6] “AppAnalysis.org: Real Time Privacy Monitoring on
Smartphones”, February 21, 2012.

[7] E. R. Gansner, E. Koutsofios, S. C. North, and K. P. Vo, “A
technique for drawing directed graphs”, IEEE-TSE, March
1993.

[8] E. Tyler and W. Verduzco, “XDA Developers: Android
Hacker's Toolkit: The Complete Guide to Rooting, ROMs and
Theming”, Wiley edition, May 2012.

[9] R. Warnke and T. Ritzau, “Qemu”, Paperback, March 10,
2009.

14Copyright (c) IARIA, 2015. ISBN: 978-1-61208-441-1

VALID 2015 : The Seventh International Conference on Advances in System Testing and Validation Lifecycle

